CSSE 220 Day 4

Implementing Classes in Java, using
. Documented Stubs
- Test-First Programming

Check out BankAccount and WordGames from SVN

Questions?

» UML?

» Primitive types vs. objects?

» Object references (the written HW)?
» Javadoc?

» Unit testing?

Grader Comments in Eclipse
» How to see them (next slide = What to do with them)

1. Update your homework project
- Right-click the project and select Team =Update to HEAD

2. Examine your Tasks view
- One of the tabs at the bottom of Eclipse
- Use Window =Reset Perspective if necessary

- Your Tasks view has been configured to show all comments with
TODO, FIXME and CONSIDER in them.

- If you want to use other tags too, it’s easy: Look at
Window = Preferences = Java = Compiler = Task Tags

3. Each CONSIDER “task” is a place where the grader has
suggested an improvement to your code

- The grader made a CONSIDER for every place where the grader
deducted points

- Each homework has a link to its grading rubric.

- Note especially the link in the grading rubric to
General Instructions for Grading Programs

Grader Comments in Eclipse

» What to do with them: Earn Back!
- Within 3 days of receiving your project back, at each CONSIDER:
1. Correct the error.
2. Change the word CONSIDER to REGRADE

- The grader will re-grade any (but only) such tags. /f you correct
all your errors, you earn back all the points that were deducted!

- Some assignments will allow Earn Back, some won't.
Earn Back /s available for HW1.

- Earn Back is a privilege - don’t abuse it. Put forth your “good faith”
effort on the project and reserve Earn Back for errors that you did
not anticipate.

- |If the comment from the grader does not make clear what your
error is:

- First look at the grading rubric for the homework (and the link therein
to General Instructions for Grading Programs).

Then ask questions as needed.

Grader Comments in Eclipse

» Some common errors from HW 1:

o Leaving behind a TODO (either not doing the TODO or doing it but
not erasing the TODO comment itself)

o Leaving behind compiler warning messages
- Failing to put your own name as author of your classes
o Using variable names that are not self-documenting

> Not using the required names for the SeriesSum class and its
method

o Various formatting errors that Control-Shift-F corrects
- Declaring a for-loop variable outside of the for-loop

- Using double as the return type for factorial or seriesSum

- In general, use /nt or Jong for exact arithmetic. Using double opens the
door for roundoff error.

> Not an error, just a comment: my style is to put the class name
before static fields, e.g. Factorial. MAX instead of just MAX

Today

» Encapsulation

» Java classes:
> Implementation details
- “How To” example
> Practice in WordGames project

Encapsulation in

Object-Oriented Software

v Fncapsulation—separating implementation
details from how an object is used
> Client code sees a b/ack box with a known /nterface

> Implementation can change without changing client

Black box Function
exposes sighature

Encapsulated Operation
inside the box implementation

Objects

Constructor and
method
signatures

Data storage and
operation

\implementation /

Ql, 2

Bank Account Example

» Essentially based on Big_Java
- But using explicit this references
- And putting fields at the top of the class
» Comparing and contrasting with Python

- Source code with Python examples is in SVN for
reference

» Next slide shows the entire class
- Subsequent slides discuss it piece by piece

0 oM =1 oo mlw (AN

10=

12
13
14=
15
la
17
15=
19
20
a1
22

The BankAccount
class
l.."?r?.‘
* L Bankiccount hazs a balance that can be
¥ changed by deposits and withdrawals.
3
¥ Faunthor Cay Horstmanh.
w
public class BankiAccount |
private double balance:
l.."?r?r
¥ Constructs a bank account
* with a =zero balance.
w
pubhlic Bankiccount () 1
this.balance = 0.0;
h
l.."?r?r
¥ Constructs a bank account with a
¥ given initial halance.
w
¥ @Aparam initialBalance
w the initial bhalance

23
a4
2 5=
268
27

*

298
30
31
32
33
34
355
36
37
38
39
40%
41
42
43
44
45
465
47
45
49
50
51€
52
53
54
55
565
57
58
59 |}

public Bankiccount (double initialBalance)

this.bhalance = initialBalance:

{

l.."?rﬂ'
* Deposits wmoney into the bhank account.
3
¥ @Eparam sgoount
* the amount to deposit
wf
public void deposit (double amount)
double rnewBalance = this.balance 4+ amount:

this.balance = newbalance;

lI."1:'.'..'
Withdraws money from the bank account.
1r
¥ @param sStoount
* the amount to withdraw
wf
public void withdraw(double amount)
double newBalance =
newbBalance;

this.balance - smount:
this.balance =

l.."?r'.'r

* Returns the current bhalance.
*

* @return the current balance
'S
public double getBalance (] 1
return this.balance:;

A class has 3 parts after its
header: ,

and

Javadoc comment precedes
the class definition Name of class, follows
keyword

/** javadoc.. */ class BankAccount:
public class BankAccount { """docstring. ..

« public,

 protected,

 private, or

 default (i.e., no specifier, called package visibility)

IEVZ! cIasses are usuaIIy declared public

IIHiiHIIIIIIIIIIIIIIIIIIIIIII IIIIii:HIIIIIIIIIIIIIIIIIII'L'

Javadoc comment precedes the method definition (always if

the method is public, optionally if the method is private)

MethodDefinitions

/** javadoc.. */ A
public wvoid depos:.t(double amount) { Nldasstringiiinitiit

\ A \ Return type Parameters with types
Ccesfs e void means * Do not list “self” as in Python
Specitier nothing returned

Java methods usually are a mix of
public (when used by objects of
other classes) and private (when
used only within this class).

Javadoc comment precedes

the constructor definition

Conistructor Definitions

/ ** javadoc... *x / def init (self, |
. ini =000
publ:.@kAccount() { ,,,,,,docstring.lfl.lmt N |
NN Access)
} Parameters with types
« Do not list “self” as in Python

/** javadoc.. */

public BankAccount (double initAmount) Use overloading
to handle default

argument values
Constructor

No explicit return type name is always
* |If you accidentally put a return the same as the

type, it is a weirdly named class name
---------- method, not a constructor!

Java constructors are
almost always public

Public Interface

v The public interface of an BankAccount
object:
> Is the inputs and outputs of
the black box BankAccount ()
> Defines how we access the BankAccount (double initAmount)

object as a user
> Consists of:

pub1ic constructors of its
class, plus volid withdraw (double amount)

public methods of its class double getBalance ()
» The private implementation
of an object consists of:
> Its (private) instance fields

o Definitions of its constructors
and methods

‘ The above shows the public interface of BankAccount objects.
- The next slides show their private implementation.

void deposit (double amount)

Q10

Generally no Javadoc here, since you should

choose variable names that are self-documenting.

Instane¢e Field Definitions

[** javadoé as needed.. */ No instance field
private double balance; definitions in

\ \ Python
2
specifier

When do you need
a field?

Java instance fields An object is

an /nstance
of a class Answer: Whenever you

should almost
always be private

have data that is
associated with the
object, that needs to
remain alive as long as
the object remains alive.

Ql1l

Constructor Implementation

E /** javadoc */ def _lnlt_(Self ,
\ NN initAmt=0.0) :
'public BankAccount (double initAmount) ({ nindocstring. .. """

this.balance = initAmount; self.balance = initAmt

/

Use the keyword
inside constructors and
methods to refer to the
implicit argument

Method Implementation

/** javadoc.. */
public double getBalance() ({
return this.balance;

/** javadoc.. */
public void deposit(double amount) {

double newBalance =
this.balance + amount;

this.balance = newBalance;
The deposit method has a

Java Can omit return
for void methods

def getBalance(self):
Illllldocstr_i ng. AN mrrirn
return self.balance

def deposit(self, amount):
"""docstr‘-ing_ Oy mirn

hewBal =
self.balance

+ amount
self.balance = newBal

(newBalance), and a reference to a
* Do you see the difference between these types of variables?

(@amount), a
(this.balance).

The BankAccount
class (summary)

=

0@ -1 o on mlw [

11
12
13

15
la
17

15=

19
20
a1
22
23
a4

a25=

268
27

10=

14=

l.."?rﬂ'

]
¥ 1 BankbAccount has a bhalance that can bk

¥ changed by deposits and withdrawals.

W

¥ Faunthor Cay Horstmanh.

L

public class BankiAccount |

473
private double balance:ILAhElS field

l.."?r?r

* Constructs a bhank account
¥ with a =zero halance.

i

this.bhalance

Constructor
public Bankbccount()] |

0.0;

Reference to the field,

using the this keyword

¥ Constructs a bank account with a
given initial halance.

I
*
*

W

*

Eparam initialBalance
the initial halance

205 fEE

a0 * Deposits wmoney into the bhank account.

31 *

32 ¥ @Eparam sgoount

33 * the amount to deposit

34 w

352 public void deposit (double amount)

36 double rnewBalance = this.balance 4+ amount:

this.balance = newbalance;

:2 deposit method. Note the use of a
200 parameter, local variable and field.
41 * WMithdraws money from the bank account.
42 *
¥ @param sStoount
44 * the amount to withdraw
45 w
4 6= public void withdraw(double amount)
47 double newBalance = this.bsalance - amount:
45 this.balance = newBalance;
% : Withdraw method
51-—- l.."?r'.'r
52 * RBeturns the current halance.
53 *
54 * Ereturn the current halance
oS5 w
S e public double getBalance (] 1
57 return this.balance:;
=] h

59} A getter method that
preserves the encapsulation

of the private field.

public Bankiccount (double initialBalance)] |

this.bhalance

initislBalance:

Another constructor. Note overfloading.

How To: Do Small Talk

[SOMETIMES 1 FORGET
HOW T0 D0 SHMALL TALK. |

[
HEY ey

WHATS UP? |
HOWYE YOU
iy WL

i)

A A

UH, YOU OKaY'?

YEAH! IT5 JUSTAN

INTERESTING QUESTION.

1M TRYING TO DECIDE.
| WHAT BEST SUMS UP My—

HEY. COWVERSATIO. /

W~ _ OH, RIGHT IM
ﬁ X FINE. You?

But surely | owe you an accurate answer!

How to: implement an interface

» An interface is a real construct in OOP
languages

> It’s just a list of method signatures (no
implementations)

» If a class implements an interface, it must
implement all those methods

» We’ll use them in today’s assignment

How To: Implement a Class

1. Create the (initially empty) class
File = New = Class

2. Write documented stubs for the public interface of the class
Find out which methods you are asked to supply

If the class /mplements an interface, then the interface tells
you exactly which methods you must implement

And Eclipse volunteers to type their stubs for you!

Documented stubs means that you write the documentation at this
step (BEFORE fully implementing the constructors and methods, that
is, while they are only stubs)

3. Impleme)
Determ 3. Test and implement each

Implem constructor and method s and

additio « Write the test cases BEFORE
4. Test the implementing the constructor/method

(¢]

o

(¢]

(¢]

(¢]

The BankAccount projec
code that we just discus

Turn now to the WordGa
SVN. Let’s together:

Study the StringTrans

Write a Shouter class th
Its transform method sho
transformed into all UPPER-

1. Create the (initially empty) class
2. Write documented stubs (use Quick Fix!
3. Write tests, then implement and test the class
4. Commit your work

When you are done with Shouter, continue per the
Wi ames instructions (linked from Homework 4).

Shouter - After Eclipse writes stubs for you

1= %%
* TODD Put here & description of thiz class: what its objects are and/or do.
&
¥ @danthor maitchler. Created Dec 4, 2009,
+
public class Zhouter implements StringTransformable |

public 3tring transform(3tring stringToTransform) 1
return null;

2

3

4

5

B

-

=i Wirrerride
=

]

1 A TODOD Replace thizs auto-generated method stub by working code.
2

3

¥

Step 1: Create the (initially empty) class
o File = New = Class

Step 2: Write documented stubs for the public interface of the class

Do you understand what it means to implement an interface ?
Do you see what a stub 1s?

Did you see how Eclipse offered to write the stubs for you?
Note the TODO’s: The above is not yet a documented stub — see the next slide for that.

i —_

Shouter - After you DOCUMENT vour stubs

1—l.."1r'.'-'
2 * b Shouter "shouts". That is, given blah, it produces the result of changing
3 ¥ @all the charascterzs in blah to upper-case.
q| « Do you see the form for Javadoc
5| * @author David Mutchler. Created Decewkber 4, 2009, comments? For their tagS?
gl */f
7 public class Shouter implements ZtringTransformable |
2 - The form for a class?
%10 * M2houts". That i=s, given blah, returns the result of changing all the
%11 * characters in kblah to upper-case.
%13 * @param stringToTransform
%14 ¥ @return the result of changing all the characters in the given String to
%15 * upper-case.
i
%1?— [rrerride
%18 public 3tring transformi(3tring stringToTransform) 1
%19 return null;
:ED 4 TODD Beplace thiz auto-generated method 3tub by working code.
'
22 |}

Step 1: Create the (initially empty) class
0 File = New = Class

Step 2: Write documented stubs for the public interface of the class
Do you understand what it means to use documented stubs ?

Do you know what you must document? (Answer: anything public.)
ST

Do you understand why you
ShOUte rTe St write tests before

1Z public class ShouterTest | implementing ’)

13 private Shouter shouter; . .

Q0 Do you see what a field is?

155 S | Why one is used here? (Answer:

16 : Funs hefore each test, constructing for each test so the Shouter can be reused in all the

51? _ _ tests. It would also be OK to construct a

el S * @Athrows java.lang.Exception

iE y new Shouter for each test.)

20 EBefore | Did you see how the

521 public void =etUp(] throws Exception {

22 this.shouter = new Shouter(); assertEquals method works?

e ' How you specify a test? How the

2;_ P @Before and @Test annotations work?

26 * Teat method for {flink Shouterfftransform(java. lang.String)}. Testa that al

27 * ztring in all upper case stays that way.

28 #/ Look at the (many)

€85 BTest tests we supplied in

a0 public void testiAllUpperlase|] |

31 String upperCase = "CZALAPZ LOCK IS CRUIZE CCMNTROL'™: ShOUterTeSt' Are they

oz a good set of tests, with

33 gssertEgualsiuppercase, this.shouter.transformiuppercase)) ;

» \ good coverage? Could
— we test how fast Shouter’s

Step 1: Create the (initially empty) class transform runs?

Step 2: Write documented stubs for the public interface of the class

2R 3a: We provided some JUnit tests for the transform method of each class.

Shouter - After you implement it

1—l|."'.'r1r

2 * A Shouter "shouts". That i=, given blah, it producezs the result of changing
- 3 * all the characters in kbhlah to upper-case.
. 4 *
a 5 * @danthor David Mutchler. Created Decemwbher 4, 2009,
6 7/
% 7 public class Shouter implements 3tringTransformable |
Q= FEE
%10 * MZhout=s". That i=, given kblah, returns the result of changing all the
%11 * characters in bhlah to upper-case.
12 i
%13 ¥ @Aparam stringToTransformm
%14 * @return the result of changing all the characters in the given 2Itring td
515 * upper-case.
15 */
17e Boverride
fla public String transform(String stringToTransform) {
%19 return stringToTransform.tolUpperCase() ; ‘<<
= ¥
21)

Do you understand how Eclipse helps you find the right method to apply
to the stringToTransform? (Pause after typing the dot.)

Do you see why you don’t need a local variable?

Do you know Java’s 15t dirty little secret about constructors? (Namely, that
Java inserted a do-nothing constructor for you! More on this later.)

Censor

» Censor: given b/ah, produces the result of replacing each

occurrence of the character (not string) foo in blah with an
asterisk, where foo is the character that the particular
Censor censors.

» How do you deal with foo?
- Can it be a parameter of transform?
- No, that violates the StringTransformable interface
- Can it be a local variable of transforn?

- No, it needs to live for the entire lifetime of the Censor.
- What’s left?

- Answer: lItis a fie/d! (What is a sensible name for the field?)
» How do you initialize the field for foo?
- Answer: by using Censor’s constructors!

Let’s together:

Write a Censor class
Its transform methoc
each occurrence of
with an asterisk, whe
particular Censor censc
Create the (initially empty

Write documented stubs (use (
Write tests, then implement and tes

A W N =

Commit your work

When you are done with Censor, continue per the

‘WordGames instructions (linked from Homework 4).
\\

Censor - After Eclipse writes stubs for you

1= v |
* TODD Fut here a description of this class: wha Step 1: Create the (initially empty) class

Step 2: Write documented stubs for
the public interface of the class

* danthor mutchler. Created Dec 7, 2009,
+
public class Censor implements 3tringTransformable |

= FEE

* TODD Put here a description of what this constructor does.

+
11= public Censor (]l f{
12 A/ TODOD
13 ¥
14

15= Fuw
lE * TODD Put here a description of what this constructor does.
17 * @Eparam characterToCensor Do you understand what it means to
18 + implement an interface ?
19= public Censor (char characterToCensor) Do you see what a stub is? Did you see how
20 A/ TODOD . .
- \ Eclipse offered to write the stubs for you?
o 2 Note the TODO’s: The above is not yet a
23 Birrerride documented stub — see the next slide for that.
2 public 3tring transform(3tring stringToTransform) |
o return null;

A TODD Replace thiz auto-generated method stub by working code.

=

2 * L Censor "eoensors®". That is, giwven blah, it produces the result of replacing
] * gach occurrence of the character [(nhot string) foo in blah with an asterisk,
4 * where foo iz the character that the particular Censor Censors.

5 *

=] ¥ dauthor David Mutchler. Created Decemwber 4, 2009.

TR

Z public class Censor implements StringTransformakble |
%- /++ G private char characterToCensor;

11 * Z3ets 'e' as the default character to censor.

1z */

13'= public Censor() |

1: } 1 1000 @ this .characterToCensor = ‘e’ ;

16

17= SEE

15 * Bets the given character as the character to Censor.

19 "
= 0 ¥ @param characterToCensor
1 w
2= public Censor (char characterToCensor) |
et /¢ TODO
-) €= this.characterToCensor =
2 5 characterToCensor;
[5= ,."""'"""
7 * Returns the result of replacing each occurrence of the character [(not
e * gtring) foo in the given 3tring with an asterisk, where foo is the
=] * gharacter that this particular CensSor Censors.
cju] *
31 * @param stringToTransform
52 * @return the result of replacing each occurrence of the character [(not
53 * string) foo in the given 3tring with an asterisk, where foo is
53 * the character that this particular Censor Censors.
) w

&= ACrrerride
57 public 3tring transform|(3tring stringToTransform) |
55 return null;
3= A4 TODD Replace thiz auto-generated method stub by working code.

Censor — After
you
DOCUMENT
your stubs

Step 1: Create the
(initially empty) class
Step 2: Write
documented stubs
for the public
interface of the class

Do you understand
what it means to use
documented stubs ?

Do you know what

you must document?
(Answer: anything public.)

S public class Censor implements StringTransformable | I
a

[

private char characterToCensor; DO you see Why Censor
fr needs a field? How the

:;SEtS 'e' a= the default character to censor. fl€|d |S Inltlallzedf? HOW

public Censor(] Censor the field is referenced

public 2tring transform(3tring stringToTransform) |
return stringToTransform.replace (this.characterToCensor, '*'):

1

2

3

4

5

& this.characterToCensor = 'e!; g th o)

T MEIRE S oal (using this):

e How Censor has two

o * Zetz the given character as the character to CcensSor.

) N 4 constructors? How those
2 * @param characterToCensor constructors are called in
3 *f

4= public Censor (char characterToCensor) | CensorTeSt’?

= this.characterToCensor = characterToCensor; Should we have made a field for the
2 ' “*’ constant? (Probably.)

E— ll."?rfr

=) * Beturns the result of replacing each occurrence of the character ([(not

] * string) foo in the given String with an asterisk, where foo i= the

1 * character that this particular CensSor CcensSors.

2 *

3 * @param stringToTransform

4 * @return the result of replacing each occurrence of the character [(not

5 * string) foo in the giwven 3tring with an asterisk, where foo i=

& * the character that this particular Censor CcensSors.

7 wy

tal= Arrerride

=

Q

1

2

—_—

